Recent Advances in In Vivo Genotoxicity Testing: Prediction of Carcinogenic Potential Using Comet and Micronucleus Assay in Animal Models
نویسندگان
چکیده
Genotoxic events have been known as crucial step in the initiation of cancer. To assess the risk of cancer, genotoxicity assays, including comet, micronucleus (MN), chromosomal aberration, bacterial reverse, and sister chromatid exchange assay, can be performed. Compared with in vitro genotoxicity assay, in vivo genotoxicity assay has been used to verify in vitro assay result and definitely provide biological significance for certain organs or cell types. The comet assay can detect DNA strand breaks as markers of genotoxicity. Methods of the in vivo comet assay have been established by Japanese Center for the Validation of Alternative Methods (JaCVAM) validation studies depending on tissue and sample types. The MN can be initiated by segregation error and lagging acentric chromosome fragment. Methods of the in vivo MN assay have been established by Organization for Economic Co-operation and Development (OECD) test guidelines and many studies. Combining the in vivo comet and MN assay has been regarded as useful methodology for evaluating genetic damage, and it has been used in the assessment of potential carcinogenicity by complementarily presenting two distinct endpoints of the in vivo genotoxicity individual test. Few studies have investigated the quantitative relation between in vivo genotoxicity results and carcinogenicity. Extensive studies emphasizes that positive correlation is detectable. This review summarizes the results of the in vivo comet and MN assays that have investigated the genotoxicity of carcinogens as classified by the International Agency for Research on Cancer (IARC) carcinogenicity database. As a result, these genotoxicity data may provide meaningful information for the assessment of potential carcinogenicity and for implementation in the prevention of cancer.
منابع مشابه
Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation
Despite regulatory directives requiring the reduction of animal use in safety testing, recent modifications to genotoxicity testing guidelines now propose the use of two in vivo genotoxicity assays as a follow-up to an in vitro positive (International Conference on Harmonization Consensus Draft Guidance S2[R1] released March, 2008). To address both goals, the in vivo comet and micronucleus (MN)...
متن کاملCytogenetic damage induced by crude oil in Anodonta cygnea (mollusca,bivalvia) assessed by the comet assay and micronucleus test
Crude oil is enriched in polycyclic aromatic hydrocarbons (PAHs). Many PAH analogs have proved to potentially damage DNA. DNA damage can be assessed using various biomarkers to find out the degree of genotoxicity of pollutants following in vitro exposure. In this research the comet assay and micronucleus (MN) test were used to detect DNA damages and cytogenetic changes following crude oil expos...
متن کاملScientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment
The Scientific Committee reviewed the current state-of-the-science on genotoxicity testing and provided a commentary and recommendations on genotoxicity testing strategies. A step-wise approach is recommended for the generation and evaluation of data on genotoxic potential, beginning with a basic battery of in vitro tests, comprising a bacterial reverse mutation assay and an in vitro micronucle...
متن کاملGenotoxic and Antigenotoxic Activity of Silymarin by an In Vivo Bone Marrow Micronucleus Assay and Comet Assay
Introduction: Silymarin is obtained from Silybum marianum (milk thistle), an edible plant that has long been used medicinally for the treatment of liver-related disorders. Silymarin is a powerful hepatoprotective and antioxidant but the anticlastogenic activity, which is an important aspect of its cancer chemoprevention is not known hence the present investigation was carried out to study its...
متن کاملComet assay and micronucleus test in circulating erythrocytes of Aequidens tetramerus exposed to methylmercury.
BACKGROUND Comet assay and micronucleus test have been used increasingly to evaluate the genotoxicity of many metals and their organic compounds in aquatic ecosystems. The use of endemic aquatic organisms as biological sentinels has proved useful in environmental monitoring. In this study, the genetic damage caused by methylmercury (MeHg) in Aequidens tetramerus (commonly called acará-sela) was...
متن کامل